
 II002

 1

SCL Rides Again! Porting RESMENU to the Web
Michael L. Davis, Bassett Consulting Services, Inc., North Haven, CT

Ralph W. Leighton, The Hartford, Hartford, CT

ABSTRACT
The Hartford had a problem. SAS Version 8 on
OpenVMS did not support text-based SAS/AF interfaces
used by the Corporate Actuarial Reserving area’s RES-
MENU application. The alternative of using SAS/AF
Frame with X-Windows had unacceptable drawbacks. So
the Reserving Automation Support area set out to migrate
RESMENU to a web-based interface using SAS/Internet
and AppDev Studio. But using the latter toolset to con-
struct Java Server Pages (JSPs) proved to be more com-
plex and difficult than anticipated.

Fortunately, The Hartford discovered a winning alternative:
SAS/IntrNet and SAS Component Language (SCL). This
paper will offer a tutorial on how to build SAS/IntrNet appli-
cations that feature data-driven (dynamic) selections using
SCL, SAS/IntrNet sessions, and a touch of JavaScript.

The balance of this presentation will show how these pro-
gramming elements are successfully used to bring The
Hartford’s reserving model support application to the web.

This paper is organized into the following three parts:

• An introduction to the RESMENU interface and the
problems that necessitated it to be rewritten

• A primer on SAS/IntrNet and the Application Dis-
patcher

• Discussion of the programming techniques used to
rewrite RESMENU

PART 1: RESMENU AND THE PROBLEM OF CONVERTING TO THE WEB

1.1 GENESIS OF RESMENU
RESMENU was created in the mid-1990s as the key com-
ponent in a major effort to modernize the Reserving area
systems. As late as mid-1996, the reporting programs and
the reserving models were written in FORTRAN. Reserv-
ing System data was stored in FORTRAN direct access
files. User support consisted of direct involvement of Re-
serving Automation Support (R.A.S.) staff. Users for-
warded requests to automation staff members who then
ran programs to produce the reports. Year-end reorgani-
zations typically took two of the staff 2.5 months to com-
plete. The first quarter production was invariably late. Ten
Reserving Analysts were served under this arrangement.

In a nine-month period from August 1997 thru May 1998,
R.A.S. staff totally rewrote the Reserving systems into
version 6.12 SAS on OpenVMS. A key component of this
rewrite was the creation of RESMENU, a SAS/AF applica-
tion driver. This interface allowed the end users to submit
their own model parameters and run the models by them-
selves. The use of SAS in RESMENU enabled the data
capabilities to be greatly expanded.

Because of the limited processing horsepower of the DEC
Alpha server then in use, a GUI interface for RESMENU
was not possible. So R.A.S. employed a “classic” text-
based SAS/AF, using SAS/AF Program entries. These
SAS/AF Program entries employ SCL. SCL was then
known as “Screen Control Language”, but the acronym
has since been recast as “SAS Component Language”
starting with the Nashville Release (Versions 7 and 8) of
SAS software.

In the RESMENU SAS/AF Program entries, SCL (Screen
Component Language) provides the dynamic features

needed for the menu activation and for the program inter-
faces that collect the user parameter choices. These se-
lections are captured primarily in the form of Choice
Groups and pop-up Selection Lists. The pop-up lists –
and also the menus -- are what are called “Extended Ta-
ble” SAS/AF Program entries. This RESMENU interface
executes SAS programs in the form of macros to accom-

plish one task or another. Such a screen is shown as Fig-
ure 1.1 on this page. One of the Extended Table pop-up
lists is shown as Figure 1.2 on the next page.

Despite having the text-based interface in an otherwise

Figure 1.1
A Sample SAS/AF RESMENU Report Interface Screen

Flexible Triangles

2

GUI world, RESMENU has worked out quite well, and it
came to attract a sizable number of users from outside the
Reserving area – people who have found the capabilities
powerful and the system easy to use, despite the inability
to employ the mouse! The current user base now num-
bers around 50, serving Reserving actuaries, their staff,
planning consultants and also a number of insurance
product pricing analysts, the latter having been attracted to
the relative ease and speed with which data requests can
be filled.

The scope of RESMENU goes far beyond service to the
Reserving area analysts. The facility launches production
processes that update or recreate the data and model
results each month. R.A.S. staff uses RESMENU to han-
dle application maintenance such as security, program
library management and directory usage. With the intro-
duction of RESMENU, the changes associated with reor-
ganizations are completed in days rather than months.

One key feature of RESMENU, which we return to in our
later discussions, is the “close coupling” of back-end data
to the user interface. When a RESMENU user accesses a
pop-up list -- such as a list of states or a list of sub-lines of
business – the SAS/AF Extended list displays a SAS data
set. The pop-up list depicted in Figure 1.2 is of this sort of
interface.

1.2 THE PROBLEM AND SELECTED SOLUTION
DIRECTION

With the introduction of SAS Version 8, a major problem
arose. SAS dropped support for text-based terminal inter-
faces in directory-based operating systems such as Open
VMS. SAS anticipated that customers would move to X-
Windows interfaces. But when R.A.S. staff tested a
graphical terminal emulator, Excursion, with the RES-
MENU application, the result was ghastly. Even worse,
each SAS window begat a separate taskbar button.
Whereas users running under the text-based terminal
emulator PowerTerm could run multiple SAS sessions,
under Excursion, users were limited to a single session.
Porting RESMENU to SAS/AF Frames under Excursion
was considered and rejected. This alternative offered little
benefit yet required a major amount of development work

to recreate the application.

So Reserving Automation Support decided to turn to a
web-based solution. Using a web-based solution not only
offered a more user-pleasing graphical interface, it would
free R.A.S. from having to issue and support additional
user IDs for the external users on the Corporate Actuarial
Alpha mid-tier server. The following principles guided the
RESMENU migration approach:

Use of a SAS Solution. The entire RESMENU environ-
ment had been built using SAS software. There was a
desire to stay with those products, despite the SAS deci-
sion to drop text-based terminal interfaces. Other Corpo-
rate Actuarial areas had developed web-enabled applica-
tions using non-SAS approaches. While each of these
was successful enough in accomplishing the intended pur-
pose, these alternative approaches also offered limitations
and unappealing downsides.

Thin-Client. The Reserving Automation area desired to
avoid major Java programming. Installing SAS on desktop
computers was not feasible.

Close Coupling of Tables to Front-End. The solution
should preserve this important feature of RESMENU, that
user selections be drawn from SAS data sets.

Minimize Impact on Processing Software. The report-
ing and data processing program structure (SAS macros)
worked well. The need to make substantial modifications
to processing programs was to be avoided.

Cross-Editing User Selections. In some instances, val-
ues selected for one parameter were interrelated to or
contingent on values of one or more other parameters.
One selection might invalidate one or more other parame-
ter choices. In the existing RESMENU, SCL code behind
the screens prevented these incongruities. So the new
system should do the same. As a related concept, Re-
serving Automation also wanted to preserve the feature of
RESMENU where a series of selections from a list (for
example, sub-line ident codes) were gathered and dis-
played on a text display.

Multiple End-User Sessions: Users of RESMENU were
accustomed to being able to run multiple concurrent ses-
sions. R.A.S. was anxious for the replacement application
to maintain this feature.

Convenient Development Environment. R.A.S. staff
hoped to be able to create a development environment
with the same ease of use that they had enjoyed with
SAS/AF program entries.

1.3 SELECTION OF APPDEV STUDIO (WEB/AF
AND JSP) AND SET-BACKS USING IT

A formal consultation with SAS Institute technical staff
resulted in a decision by R.A.S. to purchase SAS/IntrNet
for the Alpha mid-tier server and AppDev Studio for the
development desktop PCs. The license for AppDev Studio
included licenses for SAS/IntrNet, webAF, and webEIS.
AppDev Studio was licensed with the intention to reincar-
nate RESMENU as a JSP application. Licenses for Win-
dows based SAS were included in the purchase arrange-
ment, as these would be a necessary prerequisite for
working with AppDev Studio and webAF.

Figure 1.2
A Sample Extended Table Pop-up Selection List

Insurance Claim Statistics (Variates)

3

As the R.A.S. unit started to work with the newly acquired
product suite, it encountered two disappointments in short
order:

• Support for Close-coupling within webAF JSP
applications would rewuire writing Java beans and
some Java code, definitely more that the RAS staff
had anticipated.. A problem was that the version of
webAF that was then available to R.A.S. did not have
the required interfaces available for “drag and drop”
insertion of the interfaces needed for inputting the
SAS data set tables in a JSP application.

• Development Environment: In general, the webAF
development environment proved to be more chal-
lenging to work with than anticipated.

An interim solution was needed to start migrating
RESMENU reporting functions, while the webAF gener-
ated JSPs approach was to be sorted out as a long-term
solution.

1.4 AN ALTERNATIVE SOLUTION EMERGES
By late 2002, Reserving Automation Support was totally
frustrated by lack of progress in mastering webAF, and in
consequence the unit expressed great interest in a pro-
posal offered to them by Michael Davis, Bassett Consult-
ing Services. Michael advocated a different approach to
meeting The Hartford reserving support area’s immediate
requirement to creating a web interface for the RESMENU
application.

This approach would still use the AppDev Studio licenses,
but instead of using webAF and JSPs, it would make use
of SAS/IntrNet and SCL. SCL was available, since
SAS/AF was a component of the SAS licenses acquired
for the desktop computers. The SAS/IntrNet Application
Dispatcher would both launch the reports and other pro-
grams requested by users as well as generate the HTML
screens with which the user would interact. The browser
interface screens would be written by SCL programs called
by the Application Dispatcher.

Thus the actual user interface would be HTML, and it was
anticipated that a modest amount of embedded JavaScript
would be needed. “Application State” (retention of the
user’s previous selections) would be maintained by use of
the SAS/IntrNet Application Dispatcher sessions. Be-
cause of the need to maintain application state, it would
not be possible to use SAS’s htmSQL to build the screens.

R.A.S. staff would need to acquire a comfortable knowl-
edge level with basic features of HTML, HTML forms and
(as implied above) a little JavaScript. As with the webAF
JSP alternative, the approach would make use of the
Apache webserver. For development and testing, Apache
could be (and eventually was) installed on the area staff
desktops.

To illustrate the feasibility of this approach to the R.A.S.
unit, Bassett Consulting built and demonstrated a “proof of
concept” application using the baseball example employed
in the Observations article, “SCL for the Rest of Us”. The
application demonstrated that the combination of SCL and
HTML could dynamically create a drop-down or scrollable
selection list and it could also write the selected data to a
comma-delimited value (CSV) file that could be imported
into Microsoft Excel, thus duplicating what RESMENU
currently did as a report service for its existing users.

The approach held great appeal to The Hartford. Reserv-
ing Automation Support had great familiarity with SCL as
part of developing the RESMENU SAS/AF program entry
processing logic. Similar to the webAF JSP approach, the
Bassett Consulting approach was also server-centric and
thin-client.

Of key importance to the client was the preservation of
“close coupling” of the existing selection tables to the front
end. In a manner paralleling the legacy RESMENU appli-
cation, the new approach could access SAS data sets and
convert them into selection lists by the SCL software. Fi-
nally, even with the change in approach, development
would make extensive use of SAS run under Windows on
desktop personal computers as the development environ-
ment.

PART 2: A PRIMER ON USING SAS/INTRNET AND THE APPLICATION DISPATCHER

2.1 HTML FORMS
The RESMENU application is started from a pure HTML
screen. While this screen has been set up to start any of a
number of applications, all SAS/IntrNet applications are
launched by means of an HTML form. The HTML form
sends both static parameters and user selections to a
Common Gateway Interface (CGI) program, the Applica-
tion Server. What kinds of static parameters are sent from
the HTML form to the Application Dispatcher? For the
RESMENU application, they include:

• location of the Application Broker
• service used to process the request
• name of the program that executes the request
• value of _debug dispatcher options

In the RESMENU application, the start-up screen is the
only web page placed in a location where it can be seen
readily by the browser.

The selection list on the start-up screen displays the func-
tional descriptions. The values sent to the Application
Dispatcher are the names of the SCL catalog entry to be
executed. A small JavaScript routine displays the selected
program in a window. Once the user hits the “submit” but-
ton, the Application Dispatcher executes the selected SCL
program.

2.2 THE SAS APPLICATION DISPATCHER
The Application Dispatcher consists of two components:
the Application Broker; and the Application Server

4

The web server launches the Application Broker each time
a RESMENU user clicks on the “submit” button of a
screen. As noted in Section 2.1, the HTML form tells the
web server where to find the broker, what service should
be used, and what program should be run.

The Application Dispatcher supports three types of ser-
vices or Application Servers: socket, pool, and launch. For
development and testing, the R.A.S. staff member starts
and uses a socket service. For production, the intent is to
use a pool service. A socket service is a continuously
running SAS session. A pool service is one or more
server sessions, started and stopped by a load manager,
which monitors the activity level of the server sessions.

The Application Broker forwards information from input
fields on the HTML form and any configuration information
specified in the Application Broker configuration file. For
socket service, the configuration file specifies the machine
name (LOCALHOST on the developer’s PC) and the
TCP/IP port number to receive the request.

Programmers who have not done any web programming
are often confused as to where things are located in order
to get something to work. This was certainly true of author
Ralph Leighton. On Ralph’s computer, for example,
LOCALHOST is actually mapped to the following directory:

C:\Program Files\Apache Group\Apache2\Htdocs

where Apache2 is the web server location. In order to be

easily invoked in Microsoft Internet Explorer or in Net-
scape, this subdirectory must be where the HTML file initi-
ating the application, called StartUp04 in the example dis-
cussed in Part 3, must be placed. The rest of the applica-
tion can reside elsewhere, since access to the application
components is handled by the SAS librefs allocated to the
Application Dispatcher. That flexibility is a major benefit of
the approach.

2.3 PROC APPSRV
The SAS Application Dispatcher executes a SAS program
file that in turn executes a SAS Procedure called PROC
APPSRV. This procedure is a component of SAS/IntrNet
software, and Application Server sessions are invoked by
APPSRV. On Ralph’s computer, the location of the files
that start the default socket service are in the SAS product
directory structure:

C:\SAS\Intrnet\Default

For the purpose of understanding the RESMENU example

(discussed in Part 3), we should note an important job that
PROC APPSRV performs: allocation of the program and
the data libraries. This library allocation activity is very
similar to the use of the LIBNAME and FILENAME state-
ments in Base SAS. But there is an important difference
in the way PROC APPSRV procedure distinguishes be-
tween program libraries and data libraries. The following
types of statements need to be set up:

ALLOCATE FILE statements: these must be set up for
any SAS Program Directories OR any External File
Directory sources.

ALLOCATE LIBRARY statements: these must be estab-
lished for any SAS Libraries, to get at catalogs or
SAS data sets.

DATALIB statements: these specify the librefs defined in
the ALLOCATE statements as applying to data
sources, whether these be external file directories or
SAS libraries.

PROGLIB statements: these specify those librefs defined
in ALLOCATE statements as applying to program
sources, whether these be SAS program directories
or libraries containing SCL catalogs.

Thus the libref definition process has two stages to it. The
ALLOCATE statements define the nature of the sources or
target files. The DATALIBS and PROGLIBS statements
define functional usage. Figure 2.1 illustrates, by way of

example, ithe type of set-up required using SAS Connect
to access programs and data on the Alpha Mid-tier.

In the example shown, the physical location of the SAS
libraries is actually on the Alpha mid-tier. The syntax of
the ALLOCATE statements is consistent with establishing
a connection to them using SAS/CONNECT. (See section
2.7 below.) Below is the command sequence used to
initiate the Dispatcher socket service and start up
APPSRV on the PC:

SAS System
Internet

Default Service
Start interactively

As the session starts up, you briefly see the SAS graphic –
and then a button for the Dispatcher appears on the task
bar. Shutting the service down is a matter of right-clicking
the task button and selecting the CANCEL option.

Figure 2.1
A Sample PROC APPSRV Run

PROC APPSRV;
 Allocate File RESRVPGM ‘\\CORPACT\\SASPGMS’; /* RESMENU Programs */
 Allocate Library RESRVTBL 'RESRVTBL' server=N058V2; /* RESMENU Tables.. */
 Allocate Library RESRVSRC 'RESRVSRC' server=N058V2; /* Source Data for Reports */
 Allocate Library RALPHSCL 'RESRVCAT' server=N058V2; /* SCL Program Catalog Location. */

 Proglibs RALPHSCL RESRVPGM ;
 Datalibs RESRVSRC RESRVTBL ;
Run;

5

2.4 THE BROKER RUNS NON-VISUAL SCL
SCL is normally viewed as being associated with visual
and dynamic displays, which is the case in SAS/AF RES-
MENU. But in this approach to web applications, the role
of SCL is effectively reduced to being a batch program-
ming language. The SCL programs we will be discussing
here have to know all parameters as execution starts.
There is no way to feed to them replacement values for
these parameters while the programs are executing. The
reason is simple: there is no screen with which the SCL
programs can interact. And this “batch role” has some
ramifications on how the screens are set up for the appli-
cation.

How are parameters passed to such a program? The Ap-
plication Broker generates macro variables to pass
name/value pair values to the SCL programs. The text
boxes, check boxes, radio buttons and other screen ele-
ments on the HTML form that calls the SCL program gen-
erate the name/value pairs.

One important difference between SAS macro programs
and SCL programs should be noted. SAS Macro pro-
grams attempt to resolve the values for macro variables at
execution time. By comparison, SCL programs attempt to
resolve macro variables at compilation time. Since we
want to defer resolution to execution time, the SCL pro-
grams should use the SYMGET, SYMGETC, and SYM-
GETN functions to get the values of the name value pairs.

What do these SCL programs do? The SCL programs
create RESMENU screens, utilizing the following algo-
rithm:

1) If it is building a selection list, read control tables into
SCL lists for later use.

2) Write HTML header

3) Write HTML form header

4) Write form elements

5) Write form choice items (e.g., drop-down lists)

6) Write closing tags for HTML form

7) Write closing tags for HTML page

Part 3 of this paper will offer further details and examples.

2.5 OUTPUT TO _WEBOUT
Once an SCL program creates the HTML for a RESMENU
screen, there is the small matter of returning the created
screen back to the user’s web browser. How does this
take place? The Application Dispatcher creates a special
fileref, called “_WEBOUT”. This special fileref is actually
a TCP/IP socket connection to the Application Broker.
Sending output to _WEBOUT streams the SCL generated
HTML screen back to the browser.

H . T . M . L.

P a r a m e t e r s

Generated
U R L CSV- Files

C o n t r o l s

Fills In Screen Text Boxes

Selects Items from scrollable List

Selects options from Choice Groups
or from Check Box Options

Triggers Next Screen

Triggers Report

Receives HTML (Screen or Report)

Uses URL to Get at CSV File

SCL , Format SAS
and Other Data
Catalogs LibrariesDirectories

RESMENU
USER C S V Files

H T M L
Screen or Report

RESMENU FLEXIBLE
TRIANGLES REPORT

APPLICATION

Web
Browser

SAS
Program

S A S / I n t r N e t

SAS Application Dispatcher

SAS Spawner

RESMENU SAS ENVIRONMENT

SAS/Internet
Component

Open VMS Environment - Mid-Tier

NT - Server Environment

Apache Webserver

SAS Application Dispatcher
Broker Component

Figure 2.2

6

The _WEBOUT socket functions as a pipe, opened in an
append mode. Thus, it is not possible to modify or over-
write what has already been written to _WEBOUT. As the
Application Broker receives the component HTML lines of
the screen from the SCL program, it does a quick consis-
tency check on the HTTP headers and sends the results
back to the Web server, which in turn streams the results
back to the browser. Because of the streaming, results
may begin to appear in the browser before the program
has finished processing.

Because _WEBOUT is a fileref, there is an easy way for
developers to inspect the output of SCL programs being
tested. The SCL program can be altered to allocate _WE-
BOUT to an ordinary HTML file on a PC-accessible direc-
tory. This then can be inspected in Notepad or in an
HTML editor such as FrontPage or Dreamweaver. The
latter are especially useful if the screen has real-time in-
teractions written in JavaScript. This redirection of output
to a special output file can be set up as a macro parameter
to the SCL program. In the RESMENU application the
parameter is a “SAVE_” variable called save_TESTAF,
which defaults to null in production, but is set to 1 in the
AUTOEXEC.SAS on the developer’s PC.

2.6 MAINTAINING STATE VIA SESSIONS
One aspect of HTML often overlooked is that HTML pages
are “stateless”. After the user makes selections on an
HTML form and clicks on a “submit” button, the Application
Server resets itself. If a second request is made, the
server remembers absolutely nothing of the first request.

Why is the stateless nature of HTML applications an is-
sue? One of the RESMENU design principles is that user
selections need to be maintained and be available for
cross-editing and eventual passage to the report program.
Fortunately, the Application Dispatcher supports a feature
called “Sessions”.

Sessions allow SAS/IntrNet to retain state between Appli-
cation Broker requests. Two types of information can be
retained: macro variables and library members (data sets
and catalogs).

How are Sessions implemented? The SCL program that
writes the HTML page calls the APPSRV_SESSION func-
tion. Several macro variables, including _sessionid, are
then set with the values of the current session. Subse-
quent SCL programs can be run in the same session.

How does the Application Dispatcher know which macro
variables and library members to bind to the session? Any
created macro variables prefixed with “SAVE_” are re-
tained across requests. One such example was men-
tioned above: save_TESTAF. Such variables can be cre-
ated as names of scrollable Select Lists or Radio Button
clusters or Check Boxes or Input items (hidden or text
boxes). They can also be created using CALL SYMPUT.

Library members in the SAVE libref are also retained. The
values of these macro variables and library members are
saved until the session expires due to browser closure or
time-out.

2.7 EXPORTING RESULTS TO SPREADSHEETS
The current version of RESMENU creates all of its reports
in the form of CSV files as an option. This is because the
Reserving analytical staff exclusively uses Excel as their
programming tool. In order to maintain this functionality,
the web version of RESMENU must be able to export data
to non-SAS programs. In general, beyond the immediate
needs of RESMENU, a common need is the ability to get
SAS data into Lotus or into Microsoft Office applications
such as Excel, Word and PowerPoint.

Comma-Separated Value (CSV) files are an excellent
choice for exporting tables since they can be generated
simply in Base SAS. One quick way is to use the DS2CSV
(Data Set to CSV) macro, which is bundled with
SAS/IntrNet. This macro was used in the baseball proof–
of-concept model to produce the CSV version of the base-
ball team model’s reports. A second alternative would be
to use ODS custom tagsets to generate CSV or other
compatible files. A third alternative is a simple DATA Step
with the FILENAME definition pointing to the Browser.
This last is used in the RESMENU report modules.

For Reports, the ODS RTF destination is a good choice for
exporting to Microsoft Word. The ODS PDF destination
renders files that can be viewed by Adobe Acrobat or
printed with defined page breaks.

We should also acknowledge Graphical Images. These
were not (and are not) part of the immediate scope of
RESMENU, since RESMENU report modules never did
produce graphs. But, should such a need arise, these can
be exported as GIF or JPG files, rendered in the browser
via HTML image tags. The user can copy the image to the
clipboard and paste it into Microsoft Office.

Generally, SCL programs generate the CSV, RTF, and
PDF output files regardless of the user selections. Each
file is given a unique, random filename. If the user needs
those files, the user clicks on a hyperlink produced by the
SCL program. The CSV, RTF, and PDF files are spooled
to a directory on the web server, which is purged by a
scheduled task each evening.

2.8 CONNECTING TO DATA
When RESMENU is actually run in production, all of the
software – program libraries, SAS catalogs containing SCL
and formats, and SAS data libraries – are actually on
OpenVMS. Because the current SAS/AF RESMENU still
has to access these, the data libraries and catalogs are
actually Version 6.12. Clearly it is desirable to avoid dupli-
cating these in the development environment on the PC.
So SAS/CONNECT is used to enable the Desktop version
of SAS to use the Open VMS data libraries on the Alpha
mid-tier. Only format catalogs need to be cloned to the PC
development environment.

We should note one thing about the format catalog.
RESMENU makes very heavy use of user defined formats,
mostly for table lookup. An important class of these for-
mats is those which assign descriptions to sub-lines of
business, to geographic states in the USA or to claim
categories. Theoretically it should be possible to have
PROC APPSRV make available such a format catalog in a
manner analogous to the LIBNAME statement in ordinary

7

Base SAS. Unfortunately we could never discover how to
do this. As a result, each SCL program and each SAS
program has as part of its up front code a LIBNAME
statement assigning LIBRARY. The target reference,

however, is very simple: it is is simply the SAS Data library
containing the various tables, RESRVTBL, and (as shown
previously) that data library is allocated by PROC
APPSRV.

PART 3: PROGRAMMING TECHNIQUES – IN THE CONTEXT OF AN EXAMPLE

3.1 THE COMPONENTS AND SYSTEM ARCHI-
TECTURE OF THE EXAMPLE

The discussion that follows is probably best appreciated in
the context of a miniature of the actual “Flexible Triangles”
reporting application built using the Bassett Consulting
recommended approach. The Figure 3.1 on this page
depicts the flow of this miniature, and Appendix 2 shows a
sample report, a so-called loss development triangle. The
actual screens are in Appendix 1.

There are four components screens used to collect and
edit the user’s parameter selections, these being

MAIN : a central screen used to access the other three
screens

SCENARIO : A screen called by MAIN in which the user
sets choices using radio button choice groups. The
exit from SCENARIO returns the user to MAIN.

SELSOURC : A screen called by MAIN in which the user
makes a single selection from a list as to what cluster
of sublines he wants to make his sub-line selections
from – e.g. Personal Automobile or Standard Com-
mercial Workers Compensation. The exit from

SELSOURC returns the user to MAIN.

SELSUBLN : A screen called by MAIN in which the user
makes his selections of sub-lines. The report pro-
gram will make a version of its report for each such
sub-line. An important wrinkle here is that the
“sources” selection made above drives the actual ta-
ble shown in this screen. The list of sub-lines se-
lected here is a parameter to the report program. The
exit from SELSUBLN returns the user to MAIN

All four of the screens are actually produced by SCL pro-
grams, as explained in Part 2. The user enters this appli-
cation from a simple HTML screen, noted as STARTUP04
on the diagram. This causes the execution of the Applica-
tion Dispatcher to run the MAIN SCL program, producing
the MAIN screen. This particular screen MAIN actually
has four HTML forms in it, three corresponding to the
other screens (SCENARIO, SOURCES and SUBLINES)
and the forth corresponding to the final step, the execution
of the SAS program making the report. Each transition the
user makes from screen to screen or (in the last instance)
from MAIN to the execution of the report program, sends a
request to the SAS Application Broker.

In the screen-to-screen transitions, what the Application

Figure 3.1

8

Dispatcher causes to be executed is the SCL program
making the target screen the user is moving to, again as
we discussed generally in Part 2. For example, suppose
the user is in the MAIN screen and wants to get into the
SCENARIO screen. To do this, he/she hits the Submit
button, labeled “Scenario”, which actually resides in one of
the HTML forms in MAIN. This form has as “Action=“ tar-
get the Application Broker, and it contains an HTML input
entry whose name is “_program” and whose value is the
text name of the SCL program which (when executed) will
create the SCENARIO HTML screen.

Once the user is in SCENARIO and has made his/her
choice group selections from the radio button clusters,
he/she hits the Submit button located in SCENARIO. This
button resides in a form whose “Action=” reference is
again the Application Broker and whose “_program” input
entry has as its value the SCL program creating the MAIN
HTML screen. The radio button selections come back to
this SCL program in the form of “save_” macro variables.

Transitions from MAIN to SOURCES and SUBLINES work
similarly. The reason screen MAIN has four HTML
Forms, rather than the single one the other three have, is
that MAIN needs an HTML form for each possible target
selection of “next destination” the user can make. Each
transition is made with a submit, and each form can sup-
port only one “Submit” button.

3.2 STRUCTURE OF THE SCL PROGRAMS
Some of the material in this section has been discussed in
Section 2.4. The purpose of this section is to describe the
actual SCL programs as a basis for explaining program-
ming techniques.

As we have already noted in Section 2.4, these SCL pro-
grams have no display screen. As catalog entries they
have an Entry Type of “SCL”, whereas, by contrast, the
RESMENU SAS/AF entries have the Entry type “Pro-
gram”. Since the SCL programs have no display screens,
all of the “main” part of their procedural SCL code is lo-
cated in the INIT block, there being no MAIN or TERM
blocks in these program.

The SCL modules, however, can have LINK subroutines
called from code in the INIT block, and use of such sub-
routines is valuable in breaking such modules up into more
manageable pieces as well as for isolating chunks of code
that are used in more than one place. An example of the
latter is forthcoming in section 3.7. The only exceptions to
these “code location” rules are the non-executable decla-
rations, like LENGTH or ARRAY statements, which can
(and probably should) appear up front outside of the INIT
block. The flow of such an SCL program is pretty much
as shown in Figure 3.2:

3.3 CREATING THE HTML TO THE BROWSER
As explained earlier, the HTML code that is generated by
the SCL programs is directed to a fileref called “_webout”.
Unless redirected to a file by using a FILENAME state-
ment, the generate code appears in the user’s web
browser. In these programs, each fragment of html code
is first placed into the buffer for “_webout” using the
FPUT function and then it is written out using SCL function
FWRITE. For example, suppose I want to create (using

this approach) the HTML title line “Fonzie is a Good Bas-
set Hound”. As HTML this is:

<H2>Fonzie is a Good Basset Hound</H2>

and the following SCL sequence will generate this to the
browser:

 rc = fput(fweb_out,
 ‘<H2>Fonzie is a Good Basset Hound</H2>’);
 rc = fwrite(fweb_out)

In the above, “fweb_out” happens to be the SCL file-id for
the SAS Filename “_webout”, and the file is opened in
SCL thusly with an FOPEN statement before use:

fweb_out = Fopen('_webout', 'O')

where “O” is for “output”. After the creation of the screen
is complete, the file is closed using an FCLOSE statement
as per the statement:

Figure 3.2
Program Flow: SCL Programs Generating HTML

Declarations - Any LENGTH and ARRAY statements
INIT:

Check that the Application Dispatcher Session is still
open. (And in the control Module FlexTriX00-
Main, if there is not a session, create a new ses-
sion.).

Retrieve the values of any “save_” macro variables
as SCL variables, using SYMGET. There are a
lot of these, reflecting in the end the parameters
that get passed along to the report program.

Open “_webout” the standard output file to the Web.
In TESTAF mode, this will instead be a file to a
PC Directory for debugging purposes.

Create the HTML <header> section of the screen and
output same to “_webout”. In the set up we have
used, this is a LINK subroutine call.

Begin the HTML <body> section (titles, et al) and
output same to “_webout” In the setup we have
used, this is often part of the above subroutine.

Create the output screen. Start the HTML <form>
and plaster out the non-interactive stuff at the top
of the form. This is invariably a LINK subroutine
call.

Add to the <form> the html for text, text boxes, hid-
den variables radio buttons, select lists, and so
on. This may be fairly complicated. It may con-
sist of one LINK subroutine call. Or it may be
consist of several LINK subroutine calls. External
routines might also be used.

Write out the html to create the Submit button, close
out the form and close out the html. This is usu-
ally a LINK subroutine call.

Perform any end of html stuff such as saving “save_”
variables when running under TESTAF. Close out
the screen HTML <body>. Close out any files
and delete any HTML lists.

RETURN;
Link Subroutine A
Link Subroutine B

9

fweb_out = Fclose (fweb_out)

(As a safeguard, this syntax resets “fweb_out” to zero.)

As a means of entering each and every HTML line consti-
tuting the screen, the FPUT-FWRITE sequence can yield
some pretty repetitious and verbose SCL code, and so a
number of steps have been taken to make the programs
as readable as possible.

3.4 TAMING CODE CREATION USING SCL
LISTS.

Readers not familiar with SCL list should consult the Hor-
witz paper cited as a reference. In each of the SCL mod-
ules we create an SCL list to hold the lines of the HTML
code; its name in this mini-application is HTMLCODE
(which sort of indicates what we’re going to do with it).
The SCL List is created using the SCL MAKELIST com-
mand:

htmlcode = Makelist();

This statement appears at the top of the INIT block. Then
the code is loaded into HTMLCODE using the INSERTC
statements shown in the text box in Figure 3.3 above
page). The text box illustrates the loading in of the Top
part of the HTML screen, with the entered displayed title.

Once a good “stash” of HTML lines has been created, they
can be dumped out onto the web browser using the follow-
ing DO-loop:

Do JJ = 1 to Listlen(htmlcode);
 rc = Fput(fweb_out, Getitemc(htmlcode, JJ)
 rc = Fwrite(fweb_out) ;

End;

The LISTLEN function is used to tell the DO-loop how
many entries are in the SCL list. Once emptied, the SCL
list must be cleared and this is done using the CLEARLIST
function:

rc = Clearlist (htmlcode);

At the end of the program the SCL List HTMLCODE
should be deleted using the DELLIST function to prevent
memory leakage:

htmlcode = Dellist (htmlcode);

This syntax resets HTMLCODE to zero to help avoid acci-
dental use of the SCL list-id.

Since this DO-loop and CLEARLIST sequence has a good
chance of being executed more than once, this little block
of code is a good candidate for being set up as a LINK
type subroutine in the SCL, a program technique we shall
emphasise in other contexts.

3.5 CREATE RADIO BUTTON CHOICE GROUPS
USING SCL LISTS.

A second use made of SCL lists in the RESMENU applica-
tion was to set up choice groups on the screens. These
are set up as Radio Button clusters. This usage had two
components to it:

♦ Creating the components of the Choice group as an
SCL List and storing the list.

♦ Using the stored SCL List containing the components

Figure 3.3
Creating the Header Area and Titles of the Sscreen - Using an SCL List

rc = Insertc (htmlcode, '<HTML>', -1);
rc = Insertc (htmlcode, '<HEAD>', -1);
rc = Insertc (htmlcode, '<TITLE> Flexible Triangle "Sources" Table </TITLE>', -1);
rc = Insertc (htmlcode, '</HEAD>', -1);
rc = Insertc (htmlcode, ‘<BODY>’, -1);
rc = Insertc (htmlcode, ‘<H3>FlexTri03-SELSUBL – Select Sublines </H1>’, -1);
rc = Insertc (htmlcode, ‘<H1>RESMENU Flexible Triangles</H1>’, -1);
rc = Insertc (htmlcode, ‘<H1>Sub-Lines Selection</H2>’, -1);

Figure 3.4

Creating a Choice Group Set of Options as a Stored SCL List

CLMTYPE_list = Makelist() ;
 rc= Insertc(CLMTYPE_list, '0 Losses, x-CL, x-Cats', -1);
 rc= Insertc(CLMTYPE_list, '1 Catastrophe Losses', -1);
 rc= Insertc(CLMTYPE_list, '2 Continuing Litigation Losses', -1);
 rc= Insertc(CLMTYPE_list, '3 Losses Ex-Continuing Litig', -1);
 rc= Insertc(CLMTYPE_list, '4 Total all Losses', -1);

rc= savelist('catalog',
 'RALPHLIB.ChoicGrp.CLMTYPE.slist',
 CLMTYPE_list,
 dummy_list,
 'Contents of Ralph List') ;

10

to actually generate the radio button sequence.

The SCL code used to create of the SCL list is shown in
Figure 3.4. Since the choice group may very well get used
by more than one screen, a good ploy is to save the SCL
list to a permanent catalog, from which it can be retrieved
later. In point of fact, in RESMENU, the actual code that
creates of the choice group options as an SCL List is lo-
cated in a separate SCL program, not in the SCL program
that generates the radio button cluster. So you will note
that the bottom part of the code in Figure 3.4 (on the bot-
tom of the previous page) empties out the SCL List as an
entity into the catalog RALPHLIB.SCLLIST. The
SAVELIST function is used for this purpose.

How the SCL List is then accessed to produce the Radio
Button Choice Group is shown in Figure 3.5 on this page.
To retrieve a stored SCL list one uses the FILLIST func-
tion. The DO-loop then sets up the Radio button cluster
with a label at the top – in this case “Claim Type”. The DO
loop then picks off each description, which also has the
Claim Type Code value embedded as the first character –

see Figure 3.3 on this page. As each description and
code value is pulled off the particular radio button instance
is created – i.e. the text for it is uploaded in the SCL List
HTMLCODE.

3.6 JUDICIOUS USE OF COLOUR.
These HTML-generating SCL modules tend to be “wordy”.
So to further make it easier to pick out the HTML code
being constructed, we have incorporated into the SCL
Programs color conventions. If you look over the exam-
ples of the preceding section in a coloured version of this
document, you can see a little bit of this use of colour.
The HTML code itself is green coloured, which allows a
person viewing the SCL to see it clearly. In the SCL pro-
grams the following conventions are used:

Color Use
Black SCL code except where noted below
Blue Comments
Red/Orange Items that should stand out, such as sec-

tion labels, RETURN statements, key
data set and file names, LINK statements

Green HTML code and messages “put” to SAS

log
Pink JavaScript

One VERY unfortunate aspect of the use of color in
SAS/AF entries is that when the SCL program listings are
printed to a color printer, SAS does not pass along the
colors. The only way to get the colors in a printed format
is via a screen print. Screen prints are limited to what is
shown in a single screen shot. In the code examples in
the previous sections, the colors had to be re-installed
manually.

Coloring a shaded block of code is accomplished using the
command COLOR MTEXT <color>. Clearly it is quite te-
dious to keep typing this command, and so the following
function key assignments are set to apply the colors:

Color Assignment Color Assignment
Black <Cntl-E> Magenta <Cntl-I>
Green <Cntl-G> Red/Orange <Cntl-D>
Blue <Cntl-B> Pink <Cntl-J>

3.7 MODULES AND SUBROUTINES:
Another feature of the RESMENU miniature is breaking
the code into processing modules, and the SCL programs
heavily reflect that feature in two ways:

INTERNAL : in the modules themselves, the programs
are heavily broken up using so called “LINK” subrou-
tines, and this step has helped maintenance as well as
understandability. This type of subroutine usage was
of tremendous assistance when the order of execution
of functions was, in the case of two key modules, sub-
stantially altered.

EXTERNAL : separate programs and also subroutines
which concentrate a commonly used sequence of code
in one place.

The latter direction deserves a little up-front explanation.
We have already noted in section 3.5 that the Choice
Group Creation process is actually in a program separate
from the modules that use the option list. That is an ex-
ample of an external program that locates the list creation
process in a single spot. But external subroutines can
also be used to good advantage for common generic
processes, with parameters passed to them to fill in what

Figure 3.5

Using a Stored SCL List to Create the Choice Group

CLMTYPE_list = Makelist() ;
rc= fillist('catalog',
 'RALPHLIB.CHOICGRP.CLMTYPE.slist'
 CLMTYPE_list) ;

rc= Insertc(htmlcode, '<P>Claim Type:
', -1);
Do JJ = 1 To ListLen(CLMTYPE_list);
 CodeDescr = Getitemc(CLMTYPE_list, JJ);
 CodeValue = Substr(CodeDescr, 1,1);
 rc = Insertc(htmlcode, '<INPUT Type="radio" Name="save_CLMTYPE" ', -1);
 rc = Insertc(htmlocde, 'value="'||CodeValue||'>'||trim(CodeDescr)||'
',-1);
End;

11

is need for the particular use. The vehicle for such exter-
nal calls to SCL subroutines is CALL DISPLAY.

To see one easy place where such a subroutine might be
valuable, look again at Figure 3.3, which shows the crea-
tion of the header portion of a screen. All the SCL pro-
grams that make the screens are going to create a section
like that. The only difference between one or the other is
in two places on the screen: the program name on the first
title line and the function description on the third title line.
These two values can be passed into a call to a subroutine
creating the top part of the code as parameters:

Call Display (‘RALPHSCL.RESCAT.S01HDR.SCL’
Fweb_out,
“FlexTri03-SELSUBL – Select Sublines” , ‘
“Sub-Lines Selection”)

where S01HDR is the name of the subroutine. This sub-
routine is actually going to have to create the HTML since
we are not aware of any way to pass back and forth the
SCL List HTMLCODE. Thus one of the parameters it
must receive is the pointer fweb_out to “_WEBOUT”.

We mentioned earlier the likely repetitious use of the code
that empties and then clears out SCL List HTMLCODE,
and we suggested it as a strong candidate for being iso-
lated in a LINK subroutine. Here’s what it might look like:

S00_DumpCode:
 Do JJ = 1 to Listlen(htmlcode);
 Rc = Fput(fweb_out, Getitemc(HTMLCODE, JJ));
 Rc = Fwrite(fweb_out) ;
 End;
 Rc = Clearlist(HTMLCODE);
Return;

But internal subroutines can serve a second purpose – to
break up an otherwise lengthy and tedious module into
bite-sized pieces, allowing the INIT part of the program to
clearly show the program flow. Consider MAIN, whose full
name is FlexTriX00-Main. In that module, there is a sub-
routine for each HTML form underneath that screen. Simi-
larly SCENARIO (FlexTriX01-Scenario) has a subroutine
for each Choice Group. Figure 3.6 shows, for this latter
program, the resultant code in the INIT block itself after the
details have been separated into separate routines. Note
also the call (CALL DISPLAY) to the module that creates
the top end of the screen, already alluded to at the left.

3.8 CLOSE COUPLING : CREATING SELECTION
LISTS FROM SAS DATASET TABLES.

An important feature of RESMENU is the direct connection
of the user interface to tables (in the form of SAS Data-
sets) containing the item listing the user is going to select

Figure 3.6
Processing Flow of INIT Block in MAIN

/* Write HTML header */
 ImageFile = 'http://'||trim(server_nm)||'/Ralph/logo.gif';
 Call Display (‘RALPHSCL.RESCAT.S01HDR.SCL’

Fweb_out,
“FlexTri01-MAIN – Control Module” , ‘
“MAIN SCREEN”)

/* Create Dummy Form at top to Display the Debug Parameter */
 Broker = 'http://'||trim(server_nm)||'/cgi-bin/broker.exe ';
 Link S02_FormStart ;

/* Perform the Cross Edits for the Current Choice Group Selections */
 Link S03_CossEdits ;

/* Get the Current Choice Group Selection Descriptions */
 Link S04_OptionDesc ;

/* Create the Form for Scenario Choice Group Selections and Errors */
 ProgramName = "Ralphscl.Triangle.FlexTriX01_Scenario_2.SCL";
 Link S05_ChoiceGrps ;

/* Create the Form for Selecting the "Sources" Table */
 ProgramName = "Ralphscl.Triangle.FlexTriX02_SelSourc_2.SCL";
 Link S06_SourceTable ;

/* Create Form to Go and Select the Sublines */
 ProgramName = "Ralphscl.Triangle.FlexTriX03_SelSubln_2.SCL";
 Link S07_SelSubline ;

/* Create the Form for Launchng the Report */
 ProgramName = "RESRVPGM.SB0615WB.SAS";
 Link S08_MakeRept ;

/* Finish off the HTML for the Screen */
 Link S09_CloseOut ;

12

his/her choices from. We have called this “close coupling”
of the tables to the front-end. It means that, whenever a
table is changed, the revised version of the table is imme-
diately available to all users without any special mainte-
nance to the interface software. The actual update of such
tables is actually a class of functions (applications) on the
SAS/AF version of RESMENU.

In the case of the SCL approach to a web interface, the
actual selection mechanism presented to the user is going
to be an HTML Select Group. The SCL Code inputs the
SAS Dataset table and creates the scrollable Select
Group. In the miniature example, which is the subject of
the current discussion, there are two such instances:

SELSOURC : in this the user selects a perspective on
The Hartford’s line of business structure – e.g. Per-
sonal Automobile Liability or Standard Commercial
Workers’ Compensation.

SELSUBLN : In this the user makes use of the se-
lected perspective from SELSOURC and selects sub-
lines of business from the listing associated with that
perspective.

The code used to create the SOURCES selection list is
shown in Figure 3.7 (below). In the code, SRCENAME is
a mnemonic for the sub-line perspective. The last charac-
ter is used to determine which one in a series of SAS
Dataset tables -- whose names have the form XB20LX* --
should be used as an input for later selection of sub-lines

in a different screen. SRCEDESC is the label for the per-
spective that we want displayed in the Selection Group.
The box will display eight entries at a time, consistent with
the “size=” setting.

3.9 TO USE, OR NOT TO USE, JAVASCRIPT
An issue encountered in fleshing out the current sample
application was whether to use embedded JavaScript code
in a particular screen or whether the function it would

serve could instead be done by the SCL code between
screens. The only way to actually have “within-screen”
linking of items is to use JavaScript.

For example, In FlexTriX02-SelSourc – the construction of
whose scrollable Select Group is shown being built in Fig-
ure 3.7 -- there is also text box displaying the filename of
the selected table. The file name is on the “options” as a
parameter, but the only way to actually copy the file name
to the display text box as the user selects an option is to
use JavaScript. And in this case, the generated HTML
module does have the small amount of JavaScript neces-
sary to perform that data transfer. The script is below:

function FillSelectedSource(form) {
 var result = ""
 for (var i = 0; i < form.SrcList.length; i++) {
 if (form.SrcList.options[i].selected) {
 result = form.SrcList.options[i].value
 }
 }
 form.save_source.value = result
 // alert("You have selected:" + result)
 }

Comparing this code with the SCL Code in Figure 3.7, you
can see that variable “SrceList” is in fact the name given
to the Select Group – it is the “object’s” name. The
Javascript function is triggered by “onClick” action in the
Form tag. It simply scans the Select Group for the unique

entry selected. It then copies this selected filename to a
text box which displays the filename. The name of this
text box is the “SAVE_” macro variable that will carry the
value to the SCL program that builds the screen from
which the user will select sub-lines. The “options” array in
the JavaScript code is an overlay of the Select Group op-
tions. If you want to see what the screen looks like, turn to
the second page in Appendix 1.

One final observation about the JavaScript routine: You

Figure 3.7
Creating the “Sources” Selection Group from a SAS Dataset

/* Open the SAS Dataset Table */
dsid_SOURCE = Open('RESRVTBL.SOURCES' , 'i')
Call Set(dsid_SOURCE)
/* Create the Label Above the Select Group and Start the Group HTML */
rc = Insertc(htmlcode, '<P>Select Source Table (i.e. Division):
', -1)
rc = Insertc(htmlcode, '<SELECT Name="SrcList" Size="8" >', -1)
/* Load up the Select List from the SAS Dataset Table */
Do While (Fetch(dsid_SOURCE) = 0)
 FirstChar = substr(SRCENAME,1)
 TABLE = ‘XB20LIX’||FirstChar;
 rc = Insertc(htmlcode, '<OPTION Value="'||Trim(Table)||'" >'||
 Trim(SCRCDESC) ||'</OPTION>', -1)
End;
/* Terminate the Select Group and Close the File */
rc= Insertc(htmlcode, ' </SELECT></P>');
dsic_SOURCE = Close(dsid_SOURCE)

13

will notice the disabled “Alert “ statement (commented
out). While the JavaScript was being debugged in Front-
Page, the Alert was enabled, and it generated a check-
point type of display as the JavaScript was stepped
through.

In other instances, what might be a within-screen real-time
action can actually be deferred to occur between functions.
This was the direction taken with what we call “Cross Edit-
ing”. You may recall we mentioned that certain choice
group selections in SCENARIO might be inconsistent
based on other selections made. The purpose of the
cross-editing is to highlight the problem for the user and to
prevent it or to possibly correct it. “Correcting” really
means replacing the erroneous parameter value combina-
tion with one that does not have the error.

In SAS/AF RESMENU, the problem was handled on the
spot within the Program entry as the user made his/her
selections, and bad choices just did not occur, period. In
the present web implementation, the decision was made
not to go this route – because it would have meant some
considerable JavaScript. Instead the editing is done in
SCL. Specifically, the SCL regenerating the MAIN screen
performs the cross-edits and makes the corrections of bad
choices back to acceptable defaults. If errors are detected
in this process, the HTML for MAIN shows text (in red)
indicating which errors occurred. The user can re-enter
the SCENARIO screen and make another set of selections
and go back. Assuming these are OK the red-coloured
error messages disappear. If the user instead enters one
of the other screens and comes back the error messages
also disappear.

Thus the second situation could have been handled in one
of two ways: a JavaScript routine embedded in the gener-
ated HTML; or in the SCL generating the transition to the
next screen. In this case, the SCL solution path was
taken, for the very simple reason that it was a lot easier to
code.

One other thing we should note. As should be clear, the
embedded JavaScript is generated as part of the HTML.
For readability in the SCL programs, JavaScript code is
colour coded differently from the HTML – see section 3.6.
This way it shows up in an manner easily found in the SCL
module.

3.10 DEVELOPMENT ENVIRONMENT
In section 2.0, we touched on this, but the issue is impor-
tant enough to cover again in a bit more detail here. The
development and testing environment is actually a triad,
consisting of desktop PC/SAS running under Windows,
Microsoft FrontPage and a web server running on the
desktop personal computer. Depending upon the com-
puter, the developmental web server is either Microsoft
Internet Information Server (IIS) or Apache. Regardless of
the web server used, the development computer is refer-
enced as LOCALHOST. As will be noted again, Apache
is the webserver we are using.

The SCL catalog entries are developed in interactive
BUILD procedure environment on the development com-
puter, which requires a license for SAS/AF. In this devel-
opment environment, the catalog entries are executed

under TESTAF. All SCL entries can be tested using
TESTAF, except those with SUBMIT CONTINUE blocks
running SAS code. To fully test these entries, one must
execute the entry with a Display Manager “AF “ command.

A switch (SCL variable TESTAF) is built into all of the ap-
plication’s SCL catalog program entries. TESTAF is set by
SYMGET-ing macro variable save_TESTAF alluded to
earlier. When the SCL entries are tested in on the desktop
in either TESTAF mode or using an AF command, they will
pick up a set value of “1” from the macro variable
save_TESTAF, since the AUTOEXEC.SAS sets it thusly.
In this case, the generated HTML is directed to an HTML
file rather than to the user’s web browser. And this causes
generated HTML to be available as a file, which can be
debugged using an HTML editor such as Microsoft Front-
Page or Macromedia DreamWeaver.

Reserving Automation Support happens to use FrontPage,
since this program was available and convenient. Front-
Page was used to diagnose problems in the HTML and
any embedded JavaScript. (With FrontPage you can set
the scripting language sensitivity to either JavaScript or
Visual Basic.) To test out a screen, one simply opens the
generated HTML file and checks what is happening in the
“Preview” window. Once one has resolved any problems,
the SCL program that creates the HTML has to be revised
so as .to produce the corrected JavaScript.

The final piece of the triad is LOCALHOST, which enables
the developer to simulate running the application as if it
were posted to the production web server. For the Re-
serving Application, the web server is Apache with the
mid-tier OpenVMS Alpha as the SAS/IntrNet Compute
Server. This server contains both the data and the pro-
grams used by the Application Dispatcher.

The knowledge requirements for developers are familiarity
with SCL and HTML. As we have seen, some knowledge
of JavaScript is helpful, since the application employs a
modest amount of JavaScript to handle unavoidable situa-
tions where real-time response is needed within the user’s
interaction with a screen.

3.11 RUN-TIME DEBUGGING
As part of the model construction, the SCL programs make
liberal use of “put” statements to indicate what is being
worked on and they are used to dump out key values,
such as any “SAVE_” macro variable values captured with
SYMGET. In normal running, none of this output appears
on the HTML. However, one of the system variables is
“_debug”, normally set to 0 (zero). If this is set to 131 (and
don’t ask us why this value) what you get is a dump of the
system variables ahead of the screen and a dump of the
SAS Log after the display of the screen. All those little
“Put” messages are on that log.

To expedite such debugging, the real version of MAIN
actually has a choice group in it where the debug feature
can be turned on. The choice group to turn the debugging
option on or off shows up in the screen for MAIN in Ap-
pendix 1. Because of this, thus the code of the SCL mod-
ule does not have to be touched to get a run displaying
information hopefully usable in tracking down a run time
errors.

 II002

 14

CONCLUSIONS
This is for many going to seem to be an odd-duck of an
approach to accomplishing an end. There is no doubt a
lack of “comin’ thing” glitz about it. Indeed, as we have
seen, to make use of the approach in a way that does not
bury one in code, one must use a little planning and com-
mon sense. No “drag ‘n drop” here. This is programming.

Granted: vendor directions and emphasis are in the previ-
ously mentioned “comin’ thing” object oriented application
software solutions. But clearly for many of us, these ap-
proaches are not necessarily a panacea, even after we
recover and move past the culture shock of the develop-
ment environment. Clearly “Web application” does not in
and of itself imply object-orientation. Object orientation is
not a slam-dunk, for a web application uncouples viewer
layer from model / controller. The SCL approach here
essentially runs in batch and goes a long way to re-
establish that kind of connection.

The approach is clearly not a solution for all parties nor is
it really, in the case of RESMENU, a solution path for eve-
rything RESMENU currently does in the SAS AF environ-
ment. But it is a good solution path for its reporting func-
tions, and as other solution paths are used elsewhere for
other things. The fact that the solution path is client light
bodes well for integrating this effort into a wider and larger
one later.

REFERENCES
Davis, Michael (1998), “SCL for the Rest of Us: Non-
visual Uses of Screen Control Language”, published in
the Proceedings of the Twenty-Third Annual SAS Users
Group International Conference, 23, 193-202. This paper
covers a lot of applications of SCL beyond the traditionally
seen use of SCL as the code that works underneath
SAS/AF.

Horwitz, Lisa Ann (1998), "Harnessing the Power of SCL
Lists" published in the Proceedings of the Twenty-Third
Annual SAS Users Group International Conference, 23,
48-56. This is a great introduction to SCL lists, how to
manipulate them and some things the lists are useful for.

Leighton, Ralph, “Housekeeping Revisited: Managing
the Application Environment” published the Posters
section of the Proceedings of the 2000 Northeast SAS
User Group Conference, 2000, 548-557. Housekeeping
Revisited, discusses RESMENU, its philosophy, and its
features. It discusses, among other things, the collection
of techniques embedded in the system that make RES-
MENU very much self-documenting.

ACKNOWLEDGMENTS
SAS, SAS/AF, SAS/IntrNet, AppDev, and webAF are
trademarks of the SAS Institute, Inc. of Cary, North Caro-
lina.

Ralph wishes to thank Rob Russell who worked with him
as co-developer of the RESMENU web Flex Triangle ap-
plication. In addition a special thanks is due to the System
Manager in Corporate Actuarial, Dennis Rihm, who pro-
vided tremendous technical assistance. Not only was his
help invaluable in setting things up on the PC’s and on the
mid-tier, but also Dennis was always available to give
guidance and to work with the SAS Institute when prob-
lems arose involving SAS software.

Please note that the code examples supplied in this paper
are designed only to illustrate the concepts being dis-
cussed and may need to be modified to work in other ap-
plications. The authors of this paper do not support modi-
fied code.

CONTACT INFORMATION
Your comments and questions are valued and encour-
aged. Contact the authors at:

Michael L. Davis
Address: Bassett Consulting Services, Inc.

10 Pleasant Drive
North Haven CT 06473-3712

Phone: 203-562-0640
Fax: 203-498-1414
Email: michael@bassettconsulting.com
Web: http://www.bassettconsulting.com

Ralph W. Leighton
Address The Hartford Financial Services Group

c/o Corporate Actuarial Department
1 Hartford Plaza HO-1-02
Hartford CT 06115

Phone: 860-547-3014
Fax: 860-547-3606
Email: rleighton@thehartford.com (business)
 rleighton@cox.net (home)

Appendices

Appendix 1 : RESMENU Flex Triangle Screens

Appendix 2 : Sample Loss “Triangle” Report

mailto:michael@bassettconsulting.com
http://www.bassettconsulting.com
mailto:rleighton@thehartford.com
mailto:rleighton@cox.net

15

APPENDIX 1 : THE RESMENU FLEXIBLE TRIANGLE SCREENS
(Page 1 of 2)

M A I N

This is the main screen of the Flex
Triangles application. This is where
the user enters the application

The screen is generated by SCL Code.

Note the Submit Buttons. The first
three bring up screens from which the
user can select parameters governing
the type of report to be delivered.

The fourth Submit Button actually sub-
mits the report itself.

The first Submit button brings the user
into the SCENARIO screen shown
below. On return, the SCL code recre-
ating MAIN notes the parameter
choices and displays an error notation.
You can see the current values and
also the fact that there are no errors in
the users selections.

In addition, the choice of “source” and the sub-line selections made based on that choice are also shown near the submit
buttons for the Screen.

Note that the programs to be executed are indicated in the text boxes next to the respective submit buttons for the func-
tions. Since this is a prototype, having the information there helps in debugging problems.

S C E N A R I O

These are options in six categories and
there are dependencies. Here are
some of them

o For any of the scenario selections
A thru C and 1 thru 3, excess and
capped limit selections are mean-
ingless.

o Excess limits only apply if you
select scenario options 4. or 6.

o If you select a Division 98 indica-
tor value other than 0, only sce-
narios A, B and 0 thru 4.are valid.

These relationships are checked in
MAIN above when it is regenerated.

The radio button clusters are gener-
ated from stored SCL Lists.

Hitting the Submit button takes the
user backs to main. You will note an
error here: the program name is actu-
ally missing. It should be

FlexTriX00_MAIN_4

for MAIN. This is why we display the
program name in the screen.

16

APPENDIX 1 : THE RESMENU FLEXIBLE TRIANGLE SCREENS
(Page 2 of 2)

S E L S O U R C

The line structure is large – there are
some 6,120 sub-lines from which to
choose.

This enables the user to focus in on a
perspective or subset of the company’s
business from which to choose sub-
lines.

What the user selects here – a single
choice – is used as the table in the
selection of sub-lines. See the screen
SELSUBLN below.

What you see here is what the code
covered in the paper generated as a
scrollable selection list.

As the user selects an option, the table
name is filled in on the text box. This is
done using the JavaScript, also cov-
ered in Section 3.9 of the paper.

Note that the Program name for MAIN
appears correctly here.

S E L S U B L N

The user employs this to select the
various sub-lines.

As the user makes the selections,
the entries appear in the text box
about. That blank separated list is a
parameter passed to the report pro-
gram.

To undo an entry selected, the user
need only delete the entry from the
list.

JavaScript Code behind the screen
fills the list and avoids “separator”
entries in the table that have aster-
isks. It also does not enter dupli-
cates.

The list selected will be also dis-
played in MAIN.

The user can re-enter this screen
and make more selections

The source table used is the one
selected in screen SELSOURC
above

In this screen the program name for
MAIN appears correctly.

17

APPENDIX 2 : SAMPLE SIMPLIFIED REPORTS
FLEXIBLE TRIANGLE DISPLAYS FROM THE APPLICATION

AN INCURRED LOSS DEVELOPMENT REPORT

75-21-K3 : Oil Storage Tank Multi-Peril
PAID INDEMNITY LOSS TRIANGLE - as of 12-31-1998

<< Dollars in Millions >>
Devel =================== Accident Year =========================
Year 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

1 42.8 51.8 53.0 54.2 49.6 45.1 51.6 60.5 64.3 73.3
2 86.9 104.3 107.0 104.4 97.5 90.3 103.8 119.0 118.1
3 119.0 141.0 142.3 141.9 136.1 130.6 143.8 161.8
4 139.5 168.5 173.6 169.7 160.4 153.7 167.0
5 150.0 181.8 190.4 186.3 176.4 165.4
6 158.1 187.4 196.6 194.2 183.2
7 160.6 193.3 200.2 197.4
8 163.6 196.3 202.7
9 164.5 196.5
10 164.8

75-21-K3 : Oil Storage Tank Multi-Peril
INCURRED LOSS TRIANGLE - as of 12-31-1998

<< Dollars in Millions >>
Devel ================ Accident Year ============================
Year 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

1 98.5 115.0 117.5 111.9 110.5 105.7 117.8 134.6 130.7 158.6
2 136.4 160.3 168.7 161.9 158.5 147.8 161.4 183.7 182.1
3 153.0 181.4 190.2 188.9 178.6 170.7 183.7 209.8
4 158.8 193.8 199.9 197.8 186.5 182.5 190.5
5 162.2 195.8 204.0 199.7 188.6 180.7
6 162.7 196.7 204.6 199.1 188.1
7 163.8 196.6 205.1 199.3
8 165.0 197.5 204.6
9 165.1 197.3

10 164.9

A PAID LOSS DEVELOPMENT REPORT

