
Understanding SAS/Warehouse Administrator

Michael Davis, Bassett Consulting Services, North Haven, Connecticut

1

ABSTRACT

Some firms have looked at SAS/Warehouse
Administrator and decided to continue developing
applications in the traditional way. Why? Reasons
include high investment cost, difficulty of
incorporating legacy code, and the awkwardness of
using terminal emulators when running
SAS/Warehouse Administrator on a server located
in a “glass room” or other remote location.

However, if one can overcome these objections and
let SAS/Warehouse Administrator write the required
SAS code, the advantages of metadata take over.
These advantages include easier maintenance and
more rapid development of new data warehouse
applications. Another advantage includes quickly
determining the impact of changing columns and
rows. Last, SAS/Warehouse Administrator
automatically publishes HTML documentation and
process diagrams.

This paper will illustrate how a data mart is modeled
in SAS/Warehouse Administrator, drawing upon a
prototype that the author recently created. The
example will highlight how conditional processing
can be accommodated by CASE expressions. A
technique to work around the limitations of terminal
emulation will also be demonstrated.

WHAT IS DATA WAREHOUSING ?

Before one can make the case for selecting
SAS/Warehouse Administrator as the tool to use
when creating a data warehouse or data mart, it is
important to define what data warehousing means.

The author defines data warehousing as the process
of making operational data available to decision
support applications, such as SAS. Data
warehousing involves extracting, transforming,
joining, sorting, summarizing, and consolidating
operational data.

INTRODUCTION TO DATA WAREHOUSING

The skeptical reader might ask, “Why undertake this
activity?” To address the concerns of such readers,
one might offer the following common computer
programming [SAS] activities that are performed in
the cause of data warehousing:

• Raw operational data is filtered into a sub-set to
remove columns and rows that are not required
for typical decision support activities. Filtering
raw data down to the essential items can
improve the speed of subsequent decision
support activities.

• “Header” and “Detail” files need to be joined. In

operational data files, common information such
as a client’s physical address is removed from
the transactional detail files and placed into a
header file to save disk space. To analyze the
transactions, it is often necessary to re-join the
header information with the transactions in the
detail file.

• Tables need to be sorted and indexed.

Operational data is often sorted by the keys
necessary to quickly find a customer
transaction. It would be a lucky accident to find
that this order is also the best sort sequence to
support decision support reporting. Because
tables often need to be accessed by multiple
keys, it is often necessary to create multiple
indexes to promote efficient information retrieval.

• Tables need to be summarized. Decision

support activities often require summarized
data, collapsed by the analysis categories.
Rather than going through the effort and
expense of summarizing the detailed information
each time a report is run, a better strategy is to
pre-summarize the detailed tables once into the
summaries that may be needed.

• OLAP. When multiple summaries of the same

detail information is required, disk space and
retrieval performance can often be improved by
storing the summarized information in OLAP
(On-Line Analytical Processing) structures, often
known as “cubes”.

• Standardize code schemes. As an example, a

customer’s sex might be denoted in one table as
either “M” or “F”. In another table, the
information may be stored as 0 or 1. To
facilitate enterprise-wide reporting, it is desirable
to transform disparate code schemes to
common ones.

• Cleanse “dirty” data. Consider the previous

example. If the customer (patient) is coded as
“M” (male) and pregnant, then it appears that an

2

effort to correct this and other logical
inconsistencies should be mounted. Edit-check
programs can identify elements that require
cleansing and can perhaps correct some errors
without manual intervention.

• Standardize physical file structures. Some data

may be in flat files, some in SAS data sets, and
others in third-party data base management
systems (DBMSs) such as Oracle, Microsoft
SQL Server, and DB2. To facilitate reporting,
the data should be transformed into tables of
same physical format. If the reporting is to be
done with SAS tools, then the data should be
stored in SAS tables, MDDB cubes, or views
created by SAS/ACCESS.

BENEFITS OF DATA WAREHOUSING

At this point, the skeptical reader might exclaim, “I
can see the value of data warehousing but how do I
justify the cost and effort to my management?”
Here are some common benefits that data
warehousing can yield:

• Reduce intra-organization discrepancies. When

each department or division undertakes the
preparation of raw data for reporting, different
assumptions and techniques can yield different
results. This can lead to more effort being spent
on reconciling the differences than on what the
results mean.

• Reproducible results. Operational data often

changes. If one runs the same report later, the
results may differ from the first run. When the
data source for a report is a data warehouse or
mart table that represents a “snapshot” taken at
a specified interval, the report’s users can count
on consistent results.

• Document data repository. Much effort is

consumed in answering questions such as
“Where does that number come from?” and
“What does that code represent?” One common
benefit of data warehousing is that the process
and resulting data stores of the data warehouse
and marts are documented for the benefit of the
potential users.

• Improve performance of operational systems.

Transaction systems are often designed to give
best performance when a few records are to be
retrieved. By contrast, decision support
applications typically read entire tables. When
transaction and decision support systems share

the same data sources, performance of the
transaction systems can suffer. A better
solution may be to create or update data
warehouse and mart tables from the operational
systems during off-peak hours.

• Save human resources. In organizations where

data warehousing is not well organized, multiple
persons often duplicate efforts to transform
operational data for reporting. Some of these
persons may not have the appropriate skills or
tools to perform this task. One of the benefits to
data warehousing is to save human effort and
costs in creating and maintaining data
warehouses and data marts.

WHY SAS/WAREHOUSE ADMINISTRATOR ?

Some readers might exclaim at this point, “Yes, we
see the value to data warehousing. But why should
we try to convince management to license yet
another SAS product? Can’t we do data
warehousing with Base SAS?” Of course
organizations can create data warehouses and data
marts with Base SAS and other tools.

However, it is this author’s proposition that when
one considers the total cost and effort required to
create, maintain, schedule, and document data
warehouses and data marts, licensing
SAS/Warehouse Administrator may be the least
expensive alternative. Consider the following
benefits that may be gained by using this product:

• “point and click” interface

• ability to accumulate, maintain, and report on the

warehouse’s metadata

• control processes across multiple platforms

• changes are automatically posted to generated

SAS code

• process flowcharts can be generated

• HTML document can be generated and posted

to a web server

• Dependent job scheduling and load-sharing can

be accomplished via the LSF JobScheduler

• Process libraries and other features are

available to structure the warehousing process

3

WHAT IS METADATA AND WHY IS IT NEEDED ?

Metadata is information that defines sources, data
stores, code libraries, and other resources. It is
used to write the actual SAS code. Technical
metadata defines where the data lives and how to
access it. Business metadata defines what the data
means and who is responsible for it.

Perhaps the major advantage of using
SAS/Warehouse Administrator is that it facilitates
the creation and maintenance of metadata.
Consider the following example. It is decided to
change the logic used to transform a column of
intermediate information? How do we find all of the
places affected by the change and make sure that
they use the new logic?

Without a tool such as SAS/Warehouse
Administrator, making changes to an existing data
warehouse or mart can be a nightmare. Metadata
gives us a single point of control, even when
warehousing occurs across multiple computer
platforms.

SAS/Warehouse Administrator facilitates changes to
programs that create and maintain data warehouses
and marts because it actually generates the SAS
code to be run. It also provides tools to search,
report, and document the metadata. Finally,
SAS/Warehouse Administrator can import and
export metadata to other applications. This opens
the possibility of using additional tools to create and
maintain a data warehouse or mart.

DATA WAREHOUSING VOCABULARY

The term “data warehouse” is commonly used to
describe all outputs of data warehousing. However,
it is the author’s conclusion that many repositories
created by data warehousing are more accurately
described as “data marts”. Data marts are
distinguished from data warehouses in that they are
organized to support a specialized, specific
application and a finite set of reports.

The acronym “ETL” stands for extract, transform,
and load. ETL processes represent the major
activity associated with data warehousing and the
use of SAS/Warehouse Administrator.

The SAS web site lists other data warehousing
vocabulary that may be helpful to the uninitiated. It
can be found on the SAS web site, in the Data
Warehousing Community at:

http://www.sas.com/rnd/warehousing/glossary.html

Another feature of the Data Warehousing
Community section of the SAS web site that is well
worth exploring is the “Getting Started with
SAS/Warehouse Administrator”. Also supplied with
the software, it can be found at:

http://www.sas.com/service/tutorials/v8/warehous/index.html

This tutorial is invaluable to those attempting to set
up their first project in SAS/Warehouse
Administrator.

STARTING SAS/WAREHOUSE ADMINISTRATOR

The current version of SAS/Warehouse
Administrator is run within a SAS session as a SAS
desktop application. The SAS desktop is a graphical
interface to tools and files. It is supplied with Base
SAS. However, the SAS desktop is more commonly
used to access features of SAS/EIS and other SAS
products.

To start SAS/Warehouse Administrator, one can
select -> Solutions -> Development and
Programming -> Warehouse Administrator.
However, the author finds it more convenient to
issue the command “DW” from the command bar.
This will open up a window similar to the one shown
in Figure 1:

Figure 1

To open an existing warehouse environment, one
merely double-clicks on the icon representing that
environment. To create a new warehouse
environment, right-click on white space within the
SAS/Warehouse Administrator window.

Environment Hierarchy

One of the confusing aspects of SAS/Warehouse
Administrator that confronts new users is the
hierarchy of warehouse elements. The hierarchy is
illustrated in Figure 2, shown on the next page. The
following limited hierarchy description may help
those beginning to use this product.

Within a typical warehouse environment, there are
usually Data Warehouses and Operational Data
Definition Groups. Data Warehouses are further

http://www.sas.com/rnd/warehousing/glossary.html
http://www.sas.com/service/tutorials/v8/warehous/index.html

4

organized into Subjects, which may contain Data
Groups, Infomarts, and OLAP Groups. Operational
Data Groups Definition Groups include one or more
Operational Data Definitions. Figure 2 shows the
hierarchy of groups and data stores when our
“demo” environment is opened:

Figure 2

This demo environment was created to illustrate how
data from telephone calls made to customer service
centers in multiple countries might be periodically
consolidated and summarized.

In our demo environment, we see the HASUG demo
warehouse environment icon at the top of the
hierarchy. Next in the hierarchy, we see
HASUG_demo data warehouse icon and the
Country Input ODD (Operational Data Definition)
Group icon.

Under the HASUG_demo data warehouse icon is
the Call Center Data Group, the Temporary Files
data group, and the MDDBs subject. In Figure 2,
the icons for the history tables and input errors
tables are shown under the Call Center Data Group.

Under the MDDBs subject icon, there is a single
MDDBS OLAP group. Under this group are the
three MDDB OLAP cubes created by the demo
environment.

The Count Input ODD Group defines all of the input
sources to our warehouse. In addition to the files
received periodically from three countries (France,
Italy, and Netherlands), the Call Center History table
also appears. This icon refers to the same physical
table that the Call Center History data table. This is
because the inputs to warehouse processes must
be defined as ODDs and output tables must defined
as data tables.

GLOBAL METADATA

In our demo, there is just a single warehouse.
However, in practice, we may wish to create multiple
warehouses. It would be a nuisance at best if we
had to define global parameters for each
warehouse. So SAS/Warehouse Administrator
allows us to define in one place all of the metadata
that may be shared across multiple warehouses in
the same environment.

To get to the global metadata in SAS/Warehouse
Administrator, one selects -> File -> Setup… A
window similar to the one illustrated in Figure 3
appears:

Figure 3

One can create, examine update, and delete
different categories of metadata by selecting a radio
station in the Type window, selecting the metadata
item in the window below it (SAS Libraries as shown
in Figure 3), and clicking on the Add, Edit, or
Remove buttons.

SAS library metadata is largely self-explanatory.
However, one of the author’s tricks is to use
SAS/ACCESS Libname engines to define data
sources in DBMSs as SAS libraries rather than
DBMS Connections. This trick seems to work better
when the DBMS options are embedded in the Path
text box instead of the Options text box on the
Details tab.

5

In our demo, only the computer on which
SAS/Warehouse Administrator is defined as a host
computer. However, in a distributed computing
environment, remote hosts can be defined to and
can be controlled by SAS/Warehouse Administrator.

All elements of a data warehouse have an owner
and an administrator as attributes. The contact
information for all individuals who serve in these
roles is defined in a single place. This makes
updating this information much more convenient.

Last, the information about the scheduling servers is
entered as global metadata. SAS/Warehouse
Administrator allows users to define CRON, AT, and
null scheduling servers. The null scheduling server
writes a file that is used by the LSF JobScheduler
and other third-party scheduling servers.

TYPICAL SAS LIBRARIES

The libraries (librefs) that should be entered into the
SAS/Warehouse Administrator will vary with each
project. Some of the libraries defined as global
metadata will be assigned by SAS/Warehouse
Administrator. Other libraries may be assigned
externally, either when the SAS session is started,
or as part of user-written SAS code.

The following libraries are typically assigned as part
of a warehouse environment’s metadata:

• DBMS engine librefs
• Detail Data
• Source Code
• Metalib (_DWMD)
• Process Library (_SASWA)
• Warehouses

The _DWMD and _SASWA are required by
SAS/Warehouse Administrator. The requirements of
add-in tools make it a good idea to assign the
_SASWA externally through the autoexec.sas
program.

The author often defines the Work libref as part of
the metadata so it can be used when defining
temporary tables that should disappear when the
SAS session ends. If MDDBs are to be used
outside of SAS/Warehouse Administrator, such as
with AppDev Studio or WebHound software,
then it may be useful to define an MDDB libref in the
global metadata and assign it through the
autoexec.sas program.

OPERATIONAL DATA DEFINITIONS

Operational Data Definitions are metadata records
that provide the instructions to access data sources.
Figure 4 illustrates an Operational Data Definition
Properties Window.

Figure 4

The General tab allows one to enter a description
and indicate the table’s owner and administrator.
The Data tab allows one to specify the host, library,
and table name. The Columns tab, illustrated in
Figure 5, shows the type information about the
table’s variables (columns) that one would see in a
“contents” listing.

Figure 5

Two tips can be shared about the Columns tab. It
can take a bit of time to key in the required
information for a new table. If a similar table already
exists or can be generated by running some legacy
SAS code, it is much faster and easier to “import”
the required information from that table. Also, after
moving rows up or down with the arrowhead buttons
at the bottom of the window, right-click on a row and
select Save Order to retain the new order after the
properties window is closed.

6

At this point, it might be a good idea to define any
additional ODDs required. After all the ODDs have
been defined, the next logical step is usually to
define the required output structures.

These include data tables, MDDB cubes, and other
output files. These typically include flat files,
comma-separated value (CSV), and various Output
Delivery System (ODS) destinations. Then it is time
to start defining the transformation of input tables
into target outputs from the Process Editor.

USING THE PROCESS EDITOR

The Process Editor is used to manage jobs, job
flows, and process flows. These properties must be
defined in order for SAS/Warehouse Administrator to
generate the source code for the transformation
jobs.

There are multiple ways to bring up the Process
Editor. One method is to select Tools -> Process
Editor from the pull-down menus. Figure 6 shows a
sample Process Editor window.

Figure 6

The Process Editor window consists of two panes.
In Figure 6, the left pane shows the Job Hierarchy
after it has been partly expanded. Under the jobs
are the output tables and files produced by the jobs.

The right pane shows the part of process flow for the
job, output table, or file currently selected in the Job
Hierarchy pane. The direction of flow is from bottom
to top, left to right.

The author recommends adding the process
output(s) first. This is done by right-clicking in the
Process View pane and selecting Add Output

Table… This brings up the selector shown in
Figure 7. Select the category of output table to be
added and click on the Show button to display the
output tables available to be added.

Figure 7

Next, for each output table, define the input data
source(s). This is done from a selector similar to the
one shown in Figure 7. Again the same physical
table can be an output table and an input table
within the same process flow.

MAPPING STEPS

Experienced SAS users may ask, “How do I
transform the information contained in an ODD into
an output table or MDDB cube?” “How do I embed
these transformations within the metadata?” This is
done through mapping steps.

As one might anticipate, mapping steps define how
columns and rows from the input tables are mapped
to output tables or MDDB cubes. Mapping steps
can specify one-to-one, one-to-many, or many-to-
one mappings. SAS/Warehouse Administrator uses
the metadata in the mapping steps to generate
PROC SQL code to effect the transformations.
However, add-in-tools can be used to customize the
behavior of the mapping steps.

An example of the dialog box that sets the mapping
step is shown in Figure 8 on the following page. The
contents of the General tab are displayed. On this
tab, and through SAS/Warehouse Administrator, one
can add annotations by clicking on the Notes button,
which brings up a notepad window. The notes are
saved in a catalog source entry.

An example of the Source Code tab is shown in
Figure 9 on the following page. This tab allows one
to select whether the SAS transformation code is

7

generated by SAS/Warehouse Administrator or is
written by the user.

Figure 8

Figure 9

In mapping step illustrated in Figure 9, a two input
table SQL join has been specified. When an add-
in-tool has been specified, the Source Code Library
selector will show “Process Library – SASWA” and
the Catalog Entry Name selector will show the name
of the catalog entry of the add-in tool.

The Execution tab specifies the computer on which
the process is to execute. The Output Data tab
specifies the location of the output table. An
example of the Column Mapping table is shown in
Figure 10.

One advanced use of the Output Data tab is to
specify which rows are written to each of multiple
output tables. This is done by first selecting the
appropriate target table by clicking on the down
arrow. Then while the desired target table is
displayed, click on the Generation Options button.
Then on the Row Selection tab, specify “Row
Selection Conditions” or “User Defined Statements”
to direct the rows to be output to the target table.

Mapping can be either 1 to 1 (1:1) or derived. If any
of the column names are shared between the input
and output tables, clicking on the button labeled
“1 to 1 Mappings…” automatically sets mapping
relationships for those columns whose names
match.

While mapping relationships are often 1:1, SAS
veterans will want to know how they can embed
conditional mapping assignments. Those familiar
with SQL (Structured Query Language) will
recognize the solution, which are CASE
expressions.

Figure 10

Case expressions follow the format CASE…
WHEN… ELSE… END. Consider the following
example used to flag missing values.

case when picktwo_fr.= '' then 'X' else '' end

One derived mapping requirement that tested the
author’s creativity was how to code a “left” join. Left
joins are often required when updating a master
table. They are required because we only want to
replace (update) information in the master table
when a valid transaction has occurred.

The trick to accomplishing this feat is the Coalesce
function. Consider the following example:

coalesce(fr.city, history.city)

This expression replaces the value in the master
(history) table for city with the value of city in the
transaction (country) table only when city is a non-
missing value in the transaction table (and when the
WHERE keys match).

As noted earlier, one of the advantages of using
SAS/Warehouse Administrator is that many
expressions can be built using a “point and click”

8

interface in lieu of typing, illustrated by Figure 11 on
the following page.

Figure 11

While almost everyone appreciates the reduction in
typing offered by “point and click” interfaces, the
reduction of the potential for typing errors is probably
their greatest advantage.

The last feature of mapping steps is the specification
of filtering on the WHERE tab. WHERE expressions
may also be built in a “point and click” fashion in the
Expression Builder. Use the WHERE tab to specify
the merge keys when constructing a join process
and to set filtering when sub-setting a table.

LOAD STEPS

Load steps are where one can place user-written
code to override WA-generated SAS load code. To
specify a load step, right-click on a output table or
file in the Process View pane in the Process Editor
and select Edit Load Step. The dialog box similar to
the one illustrated in Figure 12 should appear.

Figure 12

Select “User Written” and specify the catalog source
entry that contains the load code. Click on the Edit
button to create or modify the load step.

While there are many valid occasions where a user-
written load step must be specified, there is a
temptation to supply user-written load steps when

the same result could be accomplished by the
appropriate specifications to the warehouse
metadata. This temptation should be strenuously
avoided!

User-written code becomes a “black box”. If other
parts of the warehouse are changed or updated, the
user-written load step will not automatically reflect
those changes. The goal in using SAS/Warehouse
Administrator is to model the process within the
metadata and let the SAS/Warehouse Administrator
generate the SAS code.

One last tip about load steps is not to forget to
specify the host on which the load step is to run. It
is very easy to forget this requirement.

EXECUTING THE JOB

There are two different ways to directly execute jobs
entered into SAS/Warehouse Administrator. From
the Job Hierarchy pane in the Process Editor, right-
click on the job to be run and select Run… A dialog
box similar to Figure 13 will appear.

Figure 13

Click on the Edit button to generate the SAS code
for the job in a Preview window and to edit it before
submitting it. This is similar to selecting
“View Code >” when right-clicking on a job.

Click on the Save button to generate the code
associated with a job and save it to a catalog source
entry or external file. This feature is very useful
when the job is large and static. Once generated,
an external job scheduler can launch the job. The
Submit button causes a job to be generated and
executed directly.

To schedule a job through SAS/Warehouse
Administrator, it is necessary to set up a scheduling
server as part of the global metadata and a job
information library. If only a single host computer is
used to run jobs, an ordinary libref allocation for the

9

job information library will suffice. However, if
multiple hosts run jobs, then SAS/SHARE should be
used.

SCHEDULING JOBS

SAS/Warehouse Administrator can natively send
jobs to CRON (Unix hosts) and AT (Windows hosts).
The null scheduler generates a “stub” file that
external job schedulers can read for scheduling
information. To use the null scheduler, right-click on
a job and select Properties. On the Date/Time tab,
as illustrated by Figure 14, select when the job is to
be run. Then on the Server tab, specify the null
scheduler server.

Figure 14

One external scheduler that takes advantage of the
null scheduler feature via an add-in tool is the LSF
JobScheduler. LSF JobScheduler is a product of
Platform Computing. An OEM license for LSF
JobScheduler is supplied as part of SAS/Warehouse
Administrator. To use LSF JobScheduler, it is
necessary to request software keys from Platform
Computing. LSF JobScheduler should be
considered when dependent job scheduling or load-
sharing is desired.

ADD-IN TOOLS

Add-in tools are programs written by the SAS
warehouse developers (or users) to extend the
functionality of SAS/Warehouse Administrator. They
are installed on top of SAS/Warehouse
Administrator and used to help load external data,
model processes, schedule jobs, and to analyze,
search, and report on metadata.

Add-in tools are usually accessed by right-clicking
on an item in the Process Editor and selecting Add-
Ins… The link to the information on add-in tools on
the SAS web site is:

http://www.sas.com/rnd/warehousing/wa/addins.html

The list of add-in tools changes periodically and new
versions of existing tools are often available for
download. The application interface to
SAS/Warehouse Administrator is documented so
one can create their own add-in tools if they can
code in SAS Component Language (SCL).

It is the author’s understanding the add-in tools will
disappear in a future version of SAS/Warehouse
Administrator although the functionality that they
provide should remain.

GENERATING HTML DOCUMENTATION

One of the author’s favorite add-in tools is the one
that automatically generates HTML documentation.
To bring up this particular add-in, get out of the
Process Editor and select Tools -> Add-Ins ->
Publish metadata to HTML page from the pull-down
menu. A dialog box similar to the one illustrated in
Figure 15 should appear.

Figure 15

The resulting HTML generates a header and table of
contents similar to what is shown in Figure 16.

Figure 16

http://www.sas.com/rnd/warehousing/wa/addins.html

10

SEARCHING AND MIGRATING METADATA

One of the big advantages of entering all of the
warehouse details as metadata is that one can
search it. From the pull-down menu, select Tools ->
Search Metadata… The dialog box similar to
Figure 17 should appear.

Figure 17

Enter the search string. Because the search is
conducted on metadata, it can be restricted by
warehouse element type. To go directly to an item
shown in the results window, just double-click on the
Warehouse Element Type.

Another useful tool is the Metadata Copy wizard. If
one needs to move metadata to a different directory
path, go to the SAS/Warehouse Administrator
desktop. Right-click on the warehouse environment
to be copied and select Copy… Follow the
instructions given by the wizard.

One of the author’s tricks when modeling
warehouses on his laptop is to map a project to the
same drive letter and path as is used on the client’s
host computer. To migrate the warehouse to host
computer, he merely copies the metadata physical
directory to a CD-ROM or Zip disk and then copies it
to the host computer.

FUTURE CHANGES AND ENHANCEMENTS

At SUGI 27, the author visited with some of SAS
staff responsible for future versions of
SAS/Warehouse Administrator. Among some of the
improvements anticipated for future releases were:

• Multiple-table join tools
• Enhancements to take advantage of

multi-threading in SAS Version 9
• Integration of the File Import Wizard

Also on the horizon was a new version of the
product called Data Builder. Data Builder provides a

Java interface so it will no longer be necessary to be
sitting in front of the host computer or to operate it
via terminal emulation software. The Java interface
will communicate to a metadata repository and
server.

There will be a one-way conversion tool to migrate
SAS/Warehouse Administrator metadata into Data
Builder. However, existing SAS/Warehouse
Administrator users can continue to use the product
as in the past.

CONCLUSION

The author hopes this paper has explained his
passion for using SAS/Warehouse Administrator
over traditional methods for creating and maintaining
data warehouses and marts. He also hopes that this
paper clearly illustrated how data warehouses are
modeled in SAS/Warehouse Administrator and
highlighted how metadata is created and managed.
Last, the author hopes that the tips passed by this
paper will reduce the learning curve by other users
of this product.

ACKNOWLEDGEMENTS

AppDev Studio, SAS, SAS/ACCESS, SAS/SHARE,
SAS/Warehouse Administrator, and WebHound are
trademarks of SAS Institute Inc. Microsoft, SQL
Server, and Microsoft Windows are trademarks of
the Microsoft Corporation. Oracle is a registered
trademark of Oracle Corporation.

The author would like to thank the Hartford Area
SAS User Group Steering Committee, which
encouraged him to prepare this paper. Special
thanks also go to Jon Schiltz and Tina Hobbs, SAS
Technical Support Department, and to the author’s
colleagues at The Nash Engineering Company and
Pfizer Inc.

CONTACT INFORMATION

The author may be contacted as follows:

Michael L. Davis
Bassett Consulting Services, Inc.
10 Pleasant Drive
North Haven CT 06473-3712
E-Mail: michael@bassettconsulting.com
Web: http://www.bassettconsulting.com
Telephone: (203) 562-0640
Facsimile: (203) 498-1414

mailto:michael@bassettconsulting.com
http://www.bassettconsulting.com

